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SAMPLING DESIGNS PROPORTIONATE
TO NON-NEGATIVE FUNCTIONS OF TWO
QUANTILES OF AUXILIARY VARIABLE

1. Sampling design

Let U be a fixed population of size N . The observation of a variable un-
der study and an auxiliary variable are denoted by ¥, and x,, i =1,..., N, re-

spectively. Moreover, let x, <x i=1,..., N—1. Our problem is estimation

i+1°
of the population average y = %Z weu Yk

Let us consider the sample space S of the samples s of the fixed effective
size 1<n < N. The sampling design is denoted by P(s). We assume that
P(s)>0 forall seSand »  __P(s)=1.

Let (X;) be the sequence of the order statistics of observations of auxilia-

ry variable in the sample s. It is well known that the sample quantile of order
a a €(0; 1) is defined as follows: Q, , = X|,, where v =[na]+1, the func-

tion [n] means the integer part of the value [n], r =1, 2, ..., N. Let us note

r
that X, =Q,, for

r . o .
< o < —. In this paper it will be more conveniently
n n

to consider the order statistic than the quantile.

Let G(r,u,i,j)=1{s: X, =x;, X, = xj} ,r=1,.,n-1;u=2,..,n,
r < u be the set of all samples whose 7 -th and u -th order statistics of the auxi-
liary variable are equal to x; and X, respectively where r < i<jSN-n+u.

Moreover,

N-n+r N-n+u

U Uce,uij=s (1)

i=r j=itu-r
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The size of the  set G(r,u,i,7j) is  denoted by
8(r,u,1,j) = Card(G(r,u,i, j)) and

o (i=1)(j=i-1YN-j ,
SUALD =1\ u=r=1) n—u @

Let f(x;,x;,c) be non-negative function of values of the order statistics X,

and X, and
(i-1Yj-i-1YN-j 3
gl i) = r=1fu-r-1)\n-u G)

The straightfoward generalization of the Wywial’s (2009) sampling design
is as follows.

Definition 1.1. The conditional sampling design proportional to the non-
negative functions of the order statistics X, X,, is as follows:

Xy Xy, X
Pm(slc):f( w: X %) (4)
' z(r,u,c)
where i<jand r<i<N-n+rand r<u<j<N-n+u.
Particularly, let f(x;,x;,c)=x; —x, and
X, —x; forx, —x;,>c,
j i
X:,X;,C)= 5
fxj %) {Oforxj—xi<c. 2

We say that the above sampling design is (conditional) unconditional when
(c>0) c=0.1In general this concept is agree with definition of the conditional

sampling design considered by Tillé (1999; 2006).
As it is well known the inclusion probability of the first order is determined

by the equations: 7, (r,u,c)=P, (s:kes)= Z{S_kes} P . (slc), k=1,..,N

. We assume that if x <0 then J(x) =0 otherwise o(x)=1. Let us note that
o(x)o(x-1)=0(x-1).

Theorem 1.1. Under the sampling design P, ,(s) the inclusion probabili-
ties of the first degree are as follows. If k <7,

ry ) = S DO =) Z(ZJ(J —f—l]ﬁj_—uf] fx,,x,0)(6)

Z(T,M,C) i=r  j=itu-r r=2\u-r-1
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Ifr<k<N-n+u,

7 (rh,C) = o(r—1)6(r—k)

z(r,u,c)
furl g1 (1-1)j—i-1YN-j-1
.(5(k—u)5(n—u) ; jzg‘r[r—lj(u—r—1){n—u—1}f(xf'x“c)+

N-k\gar(i-1Yk-i-1
+5(k—u+1)(n_u)z(T_J(u_r_ljf(xj,xi,cﬂ

+0(k—1)0(N-n+u-k)o(u—r-— 1)§Nfu(;:i][] j(N ]jf(x x,0)+ (1)

i=r j=k+1 u-r—1
. klk—lNM]klN
- - s s +
+O(N-n+r—-k+1) .1 j;_r u—r—1 f(x] Xi,C)
N-n+rN-n+u (({ — j_'_]_ N_]
+0(N—-n+r—-k)o(r - 1)1;1]§r(” ](u . J[n_u]f(xj,xi,c)J

Ifk>N-n+u,

T, (7’/ u, C) = MNiHr N_an (;:1)(] j(N ] 1Jf(x]/xzfc) (8)

Z(T, ul C) i=r  j=i+u-r u—r- 1
The inclusion probabilities of the second order are defined by

e (ruc)=m,  (r,u)=P (s:kestes)= ZP (sle)

{s:kes, tes)

where k<t=1,..., N.

Theorem 1.2. The inclusion probabilities of the second degree of the sam-
pling design P, (s|c) are as follows.
7 (ru,c)=DP(k,tes;)+P(X, =x,,tes;)+Pkes,, tes;)+
+P(X,, =x,,tes;)+Plkes, tes;)+Plkes, X, €x,)+ 9)
+P(X,, =x,, X, =x,)+P(kes;, X, =x,)+Pk,tes,)+
+P(X,, =x,,te sz)+P(k €s; tes,)+Pkes, X, ex,)+Pktes))
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where

P(ktes)=2N=u-1

Z(r,u,c)

.NfrNfu(i_1j(j_i_lJ(N_j_zjf(x;,xi,c)+5(N—n+u—k+1_5(k—u)'

= a1 u-r-1 n-u-2

N—u+r N—n+u '_1 '_‘_1 N_ '_2
2 v;t—lj(i—lr—1}(;1—;{—2]1[(’(1"’(“‘3)}’ (10)
I(N-K)o(n—u)d(N-n+u—k+1)

z(r,u,c)

N—k—Tyr(i-1Yk-i-1
.(n_u_l)z(r_J(u_r_Jf(x,.,x,-,c), (11)

(5(k—=N+n-u)-

P(X,, =x,,tes;)=

(u)

i=r

S(u—r-1)6(n-—u)o(t—k-—u+r+1)

P(kes,, tes;)= —
k-1 t-1 1_1 ]‘_l‘_z N—j—l
. 5(N—Tl+1/l—t+1z ( J( J( Jf(x.,xilc).f (12)
{ o joirr r—=1\u—-r-2\n-u-1 ]
k=1 N—n+u (7 -1 j—i—2 N—j—l
+5(t—N+n—u)z z ( ]( j( jf(x-,x,.,c)],
i=r j=itu-r r=1\u-r-2\n-u-1 /

P(X,, ex, tes,)= 0NN -R(k=r+1),

z(r,u,c)

.[a(t—k—u+r)5(N—n+u—t+1)(k_lj i (j_k_ll(N_j_1jf(x].,xi,c)+ (13)

r=1) & \u-r=1\n-u-1

+§(N—n—k+r+1)§(t—N+n—u)(k_lefu (j_k_lJ(N_j_lJf(xj,xk,c)),

r=1) & \u-r-1\n-u-1

o(r—-1)o(n—u) (5
z(r,u,c)

N=n+r N=n+u(§ — D j—i—l N_j_]' ) k)o(N t+1)o(t
. ; 7':;4 r=2\u—-r-1\n-u-1 f(xj/xifc)+ (7’— ) ( Trrusie ) ( _u).

w1 () j—i-TYN-j-1
. X 14
0 R ey SRS "

+0(k—r+1)0(t—N+n—u)o(N—-n+r—-k)o(t—u)-

tuerl 1 (f=2Y j—i—-1\N-j-1
. i:%l j:;—r r=2\u-r-1n-u-1 f(xj’xi/C) ’

P(Xes, tes,)= (r-k)5(t-N+n—u)-
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_ —7)(N—t)u +1 -1\ t-i-1

w1 (-2 j—i-1(N-j-1 s
: i, X;,C)+
= S\ r-2 \u-r-1)n-u-1 & %:,0) (13)

+0(k—r+1D)o(t—-N+n—-u)o(N—-n+r—-k)o(t—u)-

t—ut+r-1  t-1 1—2 ]'_i_l N_]'_l f( )
' xj/xilc P

Z r—2

i=k+1 j=i+u-r

u—-r-1\n-u-1

P(X,
_S(k=r+ DN - f+1)[k 1](t £ 1]£N t](f(x x,,0).(16)
L,

zxk,X( €x,)=

z(r,u,c) r—1\u—-r-1

O6(r-1)o(u—-r)
z(r,u,c)

N-t\ar(i-2Yt-i-1
-(5(r—k)5(t—u+1)(n_ujz(r_ZJ(u_r_Jf(xj,xi)+ (17)

N-—-tyar(i-2\t—-i-1
-5(k—r+1)5(t—u+r—k)[n_uj}z (r_zj(u_r_l]f(xj,xi)}

P(kes,, X, =x,)=

S(u—r—t+k-1)6(u-r-2)

P(k,tes,)=
z(r,u,c)
(18)
vgi(i-1Y j=i-3YN -]
Z(rlu,C)
(19)

k 1)\ N=ntu ] k )
(r_llgf_,(u r— 2)( ]f(x],xl,c)
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6(r-1)o(u—-r-1)0N-—n+u—t)

P(kes, tes,)= 20
t=1 Non+u (7 — _1_ N_]
(5(r k)z z ( j( 2](n_u]f(xj,xi,c)+ (20)
t-1 N-n+u — i—1—2\YN-—1
+8(k- r+1)z Z (; Zju_;_zj[n_ﬁf(xj,x,.,c)],

o(r—-1)o(k-1)0(N -n+u-—t) _
z(r,u,c)

k — 2 \N-n+u ]'_k_1 N_]
(f-zj ;l (M—T’—J[n—qu(xf’xk’c)’

_6(1" ~ N—n+r N—n+u (1 — j_i_l N—]
Pt es) =2 ,C)( 253034 Fd A (NJ RS
(22)

N-n+r N-n+u ({1 — 3 —1—1
S P e Ui (o) 0

i=t+1 j=i+u-r

P(kes,, X, =x,)=
21

2. Sampling scheme

The sampling scheme implementing the sampling design P, (s | c) P is as fol-

lows. Firstly, population elements are ordered according to increasing values of the
auxiliary variable. Let s=s, U{ijUs, U{jlUs,, s, ={k:kel, x, <x,},

:{k:keU,xj >x, >x;} and s, ={k:kel, x, >xj}. Moreover, let
U=u,i-nufijuld@+1j-1nuf{jlul(j+1,N) where U(l,i-1)=
=(L..,i-), U+, j-D)=(>0+1...,]-D,U(J+LN)=(j+1,..., N). Let
S(U(1,i—1);s) be sample space of the sample s, of size
r—=1,S(U(i+1,j—-1);s) be sample space of the sample s, of size
u—-r-1,5U(j+1,N);s) be sample space of the sample s, of size n—u.
Similarly, S = S(U, s).

The sampling scheme is given by the following of probabilities:

P, (slc)=Pi(s))p, . (i1c)Py(s)p', ., (1 €)P5(s3) (23)
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where
P -0t =i N
1 (51) = R 2(5,) = u—r-1] " 5(s3) = S 24
) Pru(X(r) X, Xy =X ,C)
P (ilc)=P(X, =x;1X, =x,,¢)=— ! (25)
' J P (X, =x;,c)
N-n+r

p'r,u (] I C) = Pr,u(X(u) = lec)

Zf(x; i,0)8(r,u,i,7) (26)

/ /

Pr,u(X(r) = x, |X(”) :lec) _ Zpy,u(5| )f(x] i,0)8(r,u,1,j) 27)

seG(r,u,i,j) Z(T’, u,C)

In order to select the sample s, firstly the j-th element of the population
should be selected, according to the probability function p', , =(jIc). Next, the

i -the element of the population should be drawn according to the probability
function p', = (i I c). Finally, the samples s,, S, and s, should be selected,

according to the sampling designs P, (s;), P,(s,) and P;(s;), respectively.

3. Some sampling strategies

The well known Horvitz-Thompson (1952) estimator is as follows:

Yirs =—Zyk (28)

kes ﬂ-k

The statistic is unbiased estimator of the population mean value if 7z, >0
for k=1,..,N. The variance and its estimator are determined by the

expressions (32) and (34), respectively.
The particular case of the above estimator is the well known sampling desi-
gn of the simple sample drawn without replacement is as follows:

-1
P, (s) :( j . The variance of the mean from the simple sample
n
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N-n

-1 _
y, = —Z y, drawn without replacement is D’ (y,, Py(s) =
M es

0, =3 -9
y N_1k=1 yk y .

The results of the previous chapter lead to construction of the regression

v, where

- 1
sampling strategy for the population meany Z—Zyi. We assume that
N ks

y,=a+bx, +e, foral iel, Zei =0 and the residuals of that linear re-
iel

gression function are not correlated with the auxiliary variable. The linear corre-

lation coefficient between the variables v and x will be denoted by o . Let

(X(,y,Y,) be two dimensional random variable where X, is the r-th order
statistic of an auxiliary variable and Y, is the variable under study. Wywiat

(2009) considered the following estimator:
yr,u,s = yHT,s + br,u,s (x _xHT,s) (29)

where

Yu B Yr
br,u,s = (30)
X(M) a X(V)

Wywial (2009) showed that under the sampling design stated in the defini-
tion 1.1 the parameters of the following strategies y,  _,P.  (slc)), are

approximately as follows.

Ely,,.,P.(sl0)~y

D21, P10 = D21 P (51 = 200003 i P ST D
+b*D*(xurs, P, (s c))

where

COU(?HT,SI}HT,S;PT,/M (sle)) = %(ZZA” ﬂﬁj (32)

kel leU T 7T,

Ay =T, =T, 7y,
D*(xnurs, P, (s1¢)) = Cov(xnurs, xurs, P, (s]c)),
D* =y, P, (s10)=Cov(y,;; . Y,r..P.(s10).
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The approximately unbiased estimator of the variance: D> = ym’s,Pyru (slc))

1s as follows

D*(y,, ., P,.(s16) = D*(y,; ., P, (s1¢))=2b, ., Couo(y,, ., xursP,, (s c)+
(33)
+b2, D*(xurs, P, (s1¢))
where
N = Ye X
COU(yHT s’xHT’sfPr,u (S | C)) - 1,2 ZZA k1
’ kes les 7Z—k 72'-[
(34)
A AL — A _
A, =—2%, D*(xurs, P, (slc)) = Covo(xnrs,xurs, P, (slc)),
k1
DX (Y, 0/ P,(81€)) = Covy y , x1115P, , (5 1€))
The next regression type estimator is given by:
= Yyrs +bs(x—xn1s) (35)
~ 0,
b, =—= (36)
vx,s
where
B 1 Xy = Xpr s ~Vurs) ~ ~
Ux,y,s === Z( : = )(yk yHT, )’ vx,s = Ux,x,s’
N-1 T,

~ 1 o~ — ~ o~

N = z—, Xprs =NXpyr /N, Yurs =Ny, /N The statistics 0,
kes 7T k

and 5 are the consistent estimators of the population covariance and variance,

Uy = N 1Z(xk x)(yk y) respectively (see e.g. Sérndal et al., 1997, p. 187).
kel

The strategy (¥/,, P, ,(s|c)) has approximately the same parameters as the
above considered strategy (¥, , ., P. ,(slc)).

Let us remember that the ordinary regression estimator is given by:

U, =y, +b(x—x5) 37)
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where

S, %), ~7.)
S YFRa o

kes

The approximate value of the variance is as follows.
N N-n
D*(§.,Py(s) = ——v,(1-p*) (39)
Nn

Ux,y

v,

where p =

The approximately unbiased estimator of the variance is as follows.
N N-n
Dz(ys’PO(S)): Nn Uy,s(]‘_rsz) (40)

v 1

X,Y,8

Where rS = 2 ny,s = Z(xk —Xs )(yk - ]/5) 4 vx,s = z)xx,s’ vy,S:Z}WVS
4/ Z)x,svy,s =1

The strategy (1., P, (s)) is asymptotically unbiased for the population mean
g. It is well known that the strategy (1, , Ps 5(5)) is unbiased for ; where

UX,S

is the sampling design of Singh and Srivastava (1980). The strategies ¥/, Pss(S)

Ps,s (s)= (41)

and (¢, ,,Pss(8)) are unbiased for the population mean y The variances of the

strategy (7., P ;(s)) is approximately equal to the right side of the equation (39).

4. Simulation analysis of strategies accuracy

Let MSE(t,P(s)) be the mean square error of the strategy (¢, P(s)) used
to estimate the population mean ? The coefficient of the relative efficiency we

define as follows:

MSE(t, P(s))

= 100%
D (]/S,PO(S))

e(t, P(s)) =
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where (}_/S,PO (s)) is ordinary simple sample mean. Let ¢el, €2, €3, e4, e5 and
e6 be the relative efficiency coefficients of the strategies (QS,PO (S)),

5., Ps (). o Pss(®). 0, P,610), (v, P(s1c)) and

(yHT P (sl C)), respectively.

The population consists of the municipalities in Sweden. The auxiliary va-
riable x is: 1975 municipal population (in thousands) and the variable under
study y is: 1985 municipal taxation revenues (in millions of kronor). Their obse-
rvations have been published by Srndal, Swenson and Wretman (1992). The size
of this population is 284 municipalities. There are three outlier observations of
the variables, see Figure 1. Let d and [, be the standard deviation and the

skewnees coefficient, respectively, of the auxiliary variable in the population. In
the case of data without outliers (size of the population N = 281) x = 24, 263,
d =24,153 and S, =0, 043. In the case of data with outliers (size of the popu-
lation N = 284) x =28,810, d =52, 873 and B, =8, 427. The samples were

replicated 1000 times.
In general, Tables 1, 2, 3 let us infer that the regression type strategies are
the best among the considered ones.

Table 1
The relative efficiency coefficients (%) of the strategies
N: 281 284
n el e2 e3 el e2 e3
2 (0,7%) 80,5 6,9 30,6 5,0 5,8 10,0
3 (1%) 6,6 2,8 22,7 1,7 5,3 9,3
4 (1,5%) 4,7 2,6 24,8 1,8 4,0 8,6
6 (2%) 4,2 2,7 28,9 1,7 3,7 9,6
9 (3%) 4,1 2,7 35,0 1,9 33 12,2
11 (4%) 3.4 2,6 42,6 24 33 13,1
14 (5%) 3,8 2,6 45,0 2,6 33 14,6
29 (10%) 3,4 2,6 61,0 4,1 4,4 21,3

On the basis of the Table 1 we conclude that the regression strategy
(Y 1yr.. Pss (8)) is worse than the strategies (7, Py (s)) , and (5, Pss(s)). In
the case of the population without outliers the Singh-Srivastava regression stra-

tegy is better than ordinary regression strategy. But in the case of the population
with outliers there is an opposite situation because (i/5, P, (s)), is better than

(75, Pss (5)) -
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The Horvitz-Thompson strategy for Singh and Srivastava's strategy
(Y 7.5+ Pss(8)) is better than the unconditional strategy (Y ,;; 5, P, ,(5)) when

the outliers do not exists. But in the case when the population is with the outliers
the strategy (Y, s, P, (8)) is better than (y,,; o, Pss(s)) only for small sam-

ple sizes n<4.
The simulation analysis of the accuracy of the conditional strategies

@W/S,Pw(s lc)), (§,,P.,(slc)) and (?HT,S,PW(S | ¢)) leads to the conclu-

sion that they are the best for the sampling design proportional to the difference
of the last and the first order statistics. That is why the Tables 2 and 3 deals only
with strategies dependent on the conditional sampling design P, ,(slc).

Table 2

The relative efficiency coefficients (%) of the conditional strategies for
P, ,(slc),c=kd, k=0,1,2,3 (The population with outliers, N = 284)

c=kd 0 d 2d 3d
n e4 e5 c6 e4 e5 c6 4 e5 e6 e4 e5 e6
2 3,3 1,1 9,7 3,5 1,7 | 11,4 8,2 2,2 232 | 11,6 | 2,1 30,7
3 1,4 1,4 5,1 1,6 1,4 6,1 49 1,8 13,5 5,5 1,9 16,6
4
6

16 | 15] 72 | 18 |1,6] 61 | 31 | 1,8 | 104 | 52 | 2,0 | 15,7
19 119] 98 | 1,7 | 1,6 ] 67 | 3.1 | 1,8 | 97 | 45 | 2.1 | 146

9 23 | 2,0 ] 140 | 2,0 | 1,9 ] 10,0 | 3.1 | 21 | 102 | 42 | 22 | 13,0
11 26 | 24 161 | 26 |24 11,9 | 31 | 21 | 100 | 41 | 2,0 | 12,7
14 34 |29 200 | 29 | 27| 148 | 3,6 | 26 | 105 | 42 | 23 | 12,4
29 45 (39270 | 47 |38 268 | 50 | 38 | 17,0 | 48 | 3.0 | 157

In the both case of the population with outliers and without them the
Horvitz-Thompson type strategy (Y, .,P,,(s1c)) is less accurate than

(3_/1,n,s/P1,n(S lc)) and (]_/s , P, (slc)).
The regression strategy (i/,,P, ,(slc)) is better than (yl,n,s’ P, (s)) for

all considered sample sizes and values of the parameter ¢ (see Tables 2 and 3 or

Figures 2 and 3).
It is possible to observe that for n > 6 and some conditional strategies are

more accurate then the unconditional appropriate ones. For instance, the strategy
(Y 7 o P14 (s13d)) is better than the unconditional strategy (V,,; ., P, 14(5)) =

= (? ur.»P114(s10)). This situation explain Figures 4 and Figure 5, where the

distribution spread of the unconditional strategy is gray and the conditional one
is black. The distribution of the unconditional strategy (Y., 14(S)) has
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some large outliers and that is why the variance of this strategy is larger than the
variance of the strategy (v, ., P, ,(s13d)). Moreover, the conditional strate-

gy neglect some small values of the unconditional one.

Table 3
The relative efficiency coefficients (%) of the conditional strategies for P (s | kd),

k=0,1,2, 3 (The population without outliers, N = 281)

c=kd 0 d 2d 3d

n 4 e5 c6 4 e5 c6 4 e5 c6 4 e5 c6
2 3,3 1,1 9,7 3,5 1,7 11,4 8,2 2,2 23,2 11,6 2,1 30,7
3 1,4 1,4 5,1 1,6 1,4 6,1 49 1,8 13,5 5,5 1,9 16,6
4 1,6 1,5 7,2 1,8 1,6 6,1 3,1 1,8 10,4 5,2 2,0 15,7
6
9

9] 1,9 | 98 | 1,7 1,6 | 6,7 | 3.1 | 1,8 | 97 | 45 | 2,1 | 146
23| 2,0 | 140 | 21| 1,9 | 10,0 | 3,0 | 2,1 | 102 | 42 | 2,2 | 13,0
11 |26 24 | 161 | 26| 24 | 11,9 | 3,0 | 21 | 10,1 | 41 | 2,0 | 12,7
14 | 34| 29 | 20,6 | 29 | 2,7 | 148 | 3,6 | 2,6 | 10,5 | 42 | 23 | 12,4

29 451 39 27,1 | 47 ] 3,8 | 268 | 50 | 38 17,0 4,8 3,0 15,7

Conclusions

The inclusion probabilities of the conditional sampling design proportionate
to the difference of two order statistics are presented. They let determine the
variance of the Horvitz-Thompson statistic as well as its estimator. The con-
struction of the sampling design can be easy modified in such a way that defini-
tion of the sampling design proportionate to e.g. the sum of two order statistics is
straightforward.

The simulation analysis let us infer that in general the considered regression
type strategies are the best among the considered ones. Moreover, the relative
efficiencies of the regression ones are similar and the best among them is the

strategy (?s,PLH (s13d)). In some cases the conditional strategies could be

slightly better than the appropriate unconditional ones but this conclusion will be
developed in separate and more deep studies.
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Figure 2. Efficiencies of the strategies in the case of the population without outliers
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SAMPLING DESIGNS PROPORTIONATE TO NON-NEGATIVE FUNCTIONS
OF TWO QUANTILES OF AUXILIARY VARIABLE

Summary

Estimation of the population average in a finite population by means of sampling
strategies dependent on sample quantiles of an auxiliary variable are considered. The
sampling design proportional to an order statistic of an auxiliary variable was defined by
Wywiat (2007, 2008). It was generalized into case of the sampling design proportional to
the difference of two order statistics by Wywial (2009), too. In this paper those results
are generalized on the case of a conditional sampling design. Several strategies including
the Horvitz-Thompson statistic and regression estimators are considered. Their accuracy
is analyzed on the basis of computer simulation experiments.





